


Slow light Transparency window can be achieved with the help of Electromagnetically Induced Transparency (EIT) method and Tunneling Induced Transparency (TIT) method accompanied by observing tunneling effect between InAs quantum dot structure with energy gap of 0.35 eV and a thin layer of GaAs potential barrier with energy gap of 1.42 eV. By investigating different […]
LD06–Effect of Wetting Layers on Quantum Dash Laser Operation in Crosslight PICS3D
We discuss the integration of quantum dashes (QDashes) into laser simulations using Crosslight Pics3D, outlining the approach for developing a model featuring asymmetrical active regions. The importance of including wetting layers to accurately represent carrier transport is investigated using results obtained for an InAs/InP QDash laser. While leakage current across the active region is unaffected […]
P10pd–Numerical Simulation of Stokes Solitons in a Silica Microresonator
We report a novel generation regime of Stokes solitons numerically found in a silica microresonator in the framework of the generalized Raman-modified Lugiato-Lefever equation. These solitons can be attained for certain parameters in the anomalous dispersion range when the pump is in the normal dispersion range. We also demonstrate the Stokes soliton-like experimental spectrum similar […]
D01–Probability Theory of Single-Carrier Avalanche in HgCdTe APDs as a Stochastic Process
Recent researches have proven that HgCdTe is a good material to acquire both high multiplication and low excess noise factor at the same time in avalanche photodiodes (APDs). As a pseudo-binary narrow bandgap semiconductor material, HgCdTe exhibits high conduction band nonparabolicity as well as strong alloy scattering, especially for hot electrons, which changes the dynamics […]
P06–Moving Bragg Solitons in a Coupler with Separated Grating and Cubic-Quintic Nonlinearity
We investigate the existence and stability of moving solitons a semilinear directional coupler where one core has cubic-quintic nonlinearity and the other core is linear with uniform Bragg grating.
LD01–Multimode Dynamics and Frequency Comb Generation in Quantum Cascade Lasers
In this talk I will discuss how resonant light-matter interaction in the gain medium of quantum cascade lasers gives rise to a rich nonlinear multimode dynamics and a variety of phase-locked multimode regimes, most notably optical frequency combs with separation between the comb lines changing from one to many dozen round-trip frequencies. I will review […]
SC05–Current-Voltage Characteristics Simulations of Organic Solar Cells Using Discontinuous Galerkin Method
The steady state drift-diffusion model (DDM) of organic solar cells that considers the surface recombination processes for majority and minority carriers, as well as their thermionic emission on both electrodes, is presented in this paper. When the full Robin boundary conditions (BCs) and the popular finite difference method with Schaffeter-Gummel discretization (FDSG) were applied, significant […]
IS10–Reconfigurability Analysis of Single and Dual Wavelength Millimeter Wave Photonic Generation Techniques
Optimizing the operating conditions of a Mach-Zhender modulator (MZM) for different design requirements has drawn considerable research interests due to its key role as an electro-optic (EO) interface in hybrid access radio-over-fiber networks. In this work, we compare the modulation efficiency and the bit error rate (BER) performances of single and dual-wavelength-modulated millimeter-wave (MMW) photonic […]
N01–Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons
Nanowire antennas embedding a single semiconductor quantum dot (QD) represent an appealing solid-state platform for photonic quantum technologies. We present recent work aiming at generating indistinguishable photons with this system. We first investigate decoherence channels that spectrally broaden the QD emission, and discuss in particular the impact of nanowire thermal vibrations. We also develop nanowire […]
LD07–Travelling wave analysis of high pulsed power long-wavelength asymmetric-waveguide short-cavity laser diodes with a bulk active layer
An effective one-dimensional travelling wave model is used to analyse the performance of a short-cavity asymmetric waveguide high pulsed power laser diodes. The effect of longitudinal inhomogeneity is proven to be modest for practical laser designs.
P13pd–Malaria Diagnosis Using High Quality-Factor Photonic Crystal Biosensor
In 2019, they accounted for 67% (274,000) of all malaria deaths worldwide, according to the World Health Organization; the african region was home to 94% of malaria cases and deaths. In this context, it is vital to detect malaria more effectively and accurately, we have developed in this paper a two dimensional photonic crystal biosensor […]
D03–Plasmonic nanorods for enhanced absorption in mid-wavelength infrared detectors
The absorption properties of HgCdTe based infrared detectors can be greatly increased in the mid-infrared band, by incorporating nanostructured plasmonic arrays on the illuminated detector face. The array periodicity, combined with the excitation of surface plasmon-polariton stationary modes, enhances the absorption efficiency by a substantial amount, allowing to reduce in turn the HgCdTe absorption thickness.
P07–Analysis of a phase shifter based on a slot polymeric waveguide with liquid crystal cladding
We numerically investigated a phase shifter based on a polymeric platform by using two different approaches. The device consists of a polymeric slot waveguide covered with an organic liquid crystal cladding, which is a promising configuration for the implementation of polymeric waveguide systems for computation, communication and sensing. Two different nematic liquid crystals have been […]
SC07–Impact of effective capture cross section on generation-recombination rate in InAs/GaAs quantum dot solar cell
Quantum dot solar cell structures have been theoretically analysed to study the impact of effective capture cross sections on quantum dot generation-recombination processes. The Poisson’s and continuity equation were solved self-consistently to obtain electrostatic potential, electron and hole carrier distribution, and electron filling of the QDs. The occupation probability of the QDs was used to […]
IS11–Design of all-optical Chalcogenide T-flip flop using Photonic Crystal Waveguide
The field of designing photonic crystal based all optical devices is the recent research trend as it remarkably promises an opportunity to diminish circuit complexity. The main intention of this present work is to contrive novel photonic crystal waveguide based all optical chalcogenide T-flip flop. Finally the efficient performance is numerically demonstrated to show elevated […]
N02–Wave-function engineering in (In,Ga)As/(In,Al)As core/shell nanowires
We study the electronic properties of In0.53Ga0.47As/InxAl1–xAs core/shell nanowires for light emission in the telecommunication range. In particular, we systematically investigate the influence of the In content x of the InxAl1–xAs shell and the diameter d of the In0.53Ga0.47As core on strain distribution, transition energies, and the character of the hole wave function. We show […]
LD08–Thermally-Enabled Transmission Line Laser Model with Arbitrary Sampled Gain Spectra
In this paper we demonstrate a directly coupled opto-electro-thermal (OET) transmission line laser model (TLLM) for edge emitting laser simulations and its comparison to physical simulations and measurements. Our results show that the OET TLLM has comparable computational efficiency to the standard opto-electronic (OE) TLLM and can include self-heating effects with good accuracy. As such […]
P12pd–Passive and active slab waveguide mode analysis using transfer matrix method
We present a general approach for numerical mode analysis of the multilayer slab waveguides using the Transfer Matrix Method (TMM) instead of the Finite Difference Frequency Domain (FDFD) method. TMM consists of working through the device one layer at a time and calculating an overall transfer matrix. Using the scattering matrix technique, we develop the […]
D04–Ge-on-Si waveguide photodetectors: multiphysics modeling and experimental validation
This work compares a multiphysics modeling approach with experimental measurements of two Ge-on-Si butt-coupled waveguide photodetectors. The coupled three dimensional electromagnetic and electrical simulation of the frequency response shows promising agreement with the measurements at 1310 nm, and provides detailed information about significant microscopic quantities, such as the spatial distribution of the optical generation rate.
P08–Design and Simulation of C-Shaped Optical Fiber Sensor
This paper presents a C-shaped optical fiber sensor for refractive index measurement. The design and simulation of the C-shaped optical fiber were conducted via Wave Optics Module-COMSOL Multiphysics®. The refractive index measurement ranging from 1.30-1.40 is performed. The simulation results showed that the C-shaped design has the potential to act as a refractive index sensor […]
MM01–Connecting atomistic and continuum models for (In,Ga)N quantum wells: From tight-binding energy landscapes to electronic structure and carrier transport
We present a multi-scale framework for calculating electronic and transport properties of nitride-based devices. Here, an atomistic tight-binding model is connected with continuum based electronic structure and transport models. In a first step, the electronic structure of (In,Ga)N quantum wells is analyzed and compared between atomistic and continuum-based approaches, showing that even though the two […]
LED02–Rigorous simulation of photon recycling effects in perovskite solar cells and LEDs
Secondary photogeneration due to reabsorption of internally emitted photons in metal halide perovskites is assessed using a novel dipole emission model that is compatible with detailed balance rates. The model considers the non-uniform local photon density of states of thin film absorbers/emitters consistently in internal and external emission and provides insight into the impact of […]
IS08–Product-sum photonic integrated circuit based on microring resonators and MMI coupler on SOI
A product-sum photonic integrated circuit consisting of SOI-based cascaded microring modulators and a 4×1 multimode interference coupler is proposed for CNN computing. A basic product-sum operation is numerically demonstrated for 2×2 matrix.
N03–Numerical and Experimental Characterization of Chirped Quantum Dot-based Semiconductor Optical Amplifiers
We present a model for the description of the dynamical behavior of Quantum Dot (QD) based Semiconductor Optical Amplifiers (SOAs) under injection of optical pulses. The model uses a Time Domain Traveling Wave (TDTW) approach to describe the optical field in the amplifier, and allows us to consider chirped QD materials by the inclusion of […]
LD09–Understanding the photon-photon resonance of DBR lasers using mode expansion method
Photon-photon resonance (PPR) in DBR lasers is studied by numerical simulations, which are based on the mode expansion and the rate equations. It is found that the photon number and the mode coupling factor play important roles to understand physical mechanism of the PPR behind.
P11pd–Numerical Simulations on Quantum Noise Squeezing for CW Light in Highly Nonlinear Tellurite Fibers
Quantum noise suppression of light is desirable for a lot of applications including quantum communication, quantum sensing, and detection of gravitational waves. There are several ways to obtain squeezed light including Kerr squeezing in optical fibers. Silica fibers are commonly used for this purpose. Here we propose to use highly nonlinear tellurite glass fibers for […]
D05–Evaluation of material profiles for III-V nanowire photodetectors
In this paper we report the simulation-based design of experiment (DoE) study for three different types of III-V based pin photodetectors operating at various wavelengths. Our DoE work shows that the optimal configuration for each device is strongly determined by the wavelength at which we are aiming to operate the photodetector and that a trade-off […]
P09–Nanoplasmonic Multiband Filters Using SIR for Wireless Networks
This article demonstrates design and numerical analysis of the multiband band-pass and band-stop filters using an even-mode MIM waveguide-based step impedance resonator (SIR) and simultaneously operated at optical bands O & L bands (185.72 THz and 230.02 THz) with higher efficiency (>35 dB)
IS01–Improved Phase Detection in On-Chip Refractometers
An improved phase detection scheme for Mach-Zehnder and bimodal interferometers is presented. By using a 90° hybrid, always two outputs operate at a highly sensitive point and the phase-shift-unambiguousness is extended to a range of 2π. The phase detection is independent of mode attenuations and input power fluctuations.