Laser Diodes

Laser diodes

LD01–Multimode Dynamics and Frequency Comb Generation in Quantum Cascade Lasers

Belyanin A., Wang Y.

In this talk I will discuss how resonant light-matter interaction in the gain medium of quantum cascade lasers gives rise to a rich nonlinear multimode dynamics and a variety of phase-locked multimode regimes, most notably optical frequency combs with separation between the comb lines changing from one to many dozen round-trip frequencies. I will review […]

LD02–GaN-based bipolar cascade laser exceeding 100% differential quantum efficiency

Piprek J., Siekacz M., Muziol G., Skierbiszewski C.

Worldwide research efforts have been focusing on quantum efficiency enhancements of GaN-based light emitters. A promising approach is the separation of multiple active regions by tunnel junctions, enabling electron-hole pairs to generate more than one photon. Utilizing advanced numerical device simulation, we here analyze internal physics and performance limitations of such InGaN/GaN bipolar cascade laser […]

LD03–Thermal and optical simulation of InP on Si nanocavity lasers

Wen P., Tiwari P., Moselund K. E., Gotsmann B.

Accurate prediction of thermal effects is important for scaled photonic devices as excessive heating may lead to device failure. This paper addresses numerical modeling of thermal properties of InP nanocavity lasers on Si combined with optical simulations in Lumerical and lasing threshold measurements. Different geometries with diameters ranging from 200 nm to 2 µm are […]

LD04–A multiscale approach for BTJ-VCSEL electro-optical analysis

Gullino A., Pecora S., Tibaldi A., Bertazzi F., Goano M., Debernardi P.

This paper presents a theoretical comparison of the electro-optical characteristics of 850 nm GaAs/AlGaAs pinand BTJ-based VCSELs. The calculations are based on a drift-diffusion model coupled with a NEGF formalism, able to model accurately the tunneling across the TJ. The resulting LIV characteristics demonstrate promising improvements, at both 25 and 80 ◦C, enabled by TJ […]

LD06–Effect of Wetting Layers on Quantum Dash Laser Operation in Crosslight PICS3D

Schaefer S., Obhi R. J. K., Valdivia C. E., Hinzer K.

We discuss the integration of quantum dashes (QDashes) into laser simulations using Crosslight Pics3D, outlining the approach for developing a model featuring asymmetrical active regions. The importance of including wetting layers to accurately represent carrier transport is investigated using results obtained for an InAs/InP QDash laser. While leakage current across the active region is unaffected […]

LD08–Thermally-Enabled Transmission Line Laser Model with Arbitrary Sampled Gain Spectra

Novakovic B., Tao Y., Asgari S., McGuire D.

In this paper we demonstrate a directly coupled opto-electro-thermal (OET) transmission line laser model (TLLM) for edge emitting laser simulations and its comparison to physical simulations and measurements. Our results show that the OET TLLM has comparable computational efficiency to the standard opto-electronic (OE) TLLM and can include self-heating effects with good accuracy. As such […]

LD10–Optical Feedback Regimes Suitable for Distance Measurement with a Ring Laser

Lombardi L., Annovazzi-Lodi V., Aromataris G., Scirè A.

We numerically study the behavior of a ring laser subject to bidirectional delayed optical feedback, when the isolated laser is in the quasi-unidirectional regime. We find different regimes, two of which are of special interest, because the laser switching period, between the clockwise and the counter-clockwise mode, is linearly related to the time of flight […]

LD13pd–Numerical Modeling and Experimental Validation of Tm- and Er-Doped Tellurite Microsphere Lasers

Anashkina E. A., Andrianov A. V.

We report an efficient semi-analytical method for modeling of CW rare-earth ion-doped microlasers. We numerically simulated threshold pump powers and expected laser wavelengths for in-band pumped Tm- and Er-doped tellurite glass microspheres. With the increase of Q-factor, the laser wavelength grows smoothly for Tm and there are jumps from the C-band to the L-band for […]

LD14pd–Optimization of Double-Circular-Hole Photonic-Crystal Surface-Emitting Lasers

Kuo C.-Y., Yang Z.-X., Lin G.

Photonic-crystal surface-emitting lasers (PCSELs) with double circular holes in the unit cell are optimized in terms of slope efficiency and single-mode stability. For PC-SELs with double-hole shift of one-fourth and one-third lattice constant, the area ratios of two holes are optimized separately and fall in completely different range; moreover, their threshold gain discrimination values are […]