Broderick C. A.

Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland; Department of Physics, University College Cork, Cork T12 YN60, Ireland


MM02–Efficient multi-band k·p calculations of superlattice electronic and optical properties using plane waves

Murphy C., O’Reilly E. P., Broderick C. A.

Solving the multi-band k·p Schrodinger equation for a quantum-confined heterostructure using a reciprocal space plane wave approach presents several advantages compared to conventional real space approaches such as the finite difference or element methods. In addition to allowing analytical derivation of the heterostructure Hamiltonian, a desired level of accuracy in the computed eigenstates can generally […]

NM04–Strain-balanced GaAs(1-x)Bi(x)/GaN(y)As(1-y) W-type quantum wells for GaAs-based 1.3-1.6µm lasers

Davidson Z. C. M., Rorison J. M., Sweeney S. J., Broderick C. A.

Highly-mismatched alloys constitute a promising approach to extend the operational range of GaAs-based quantum well (QW) lasers to telecom wavelengths. This is challenging using type-I QWs due to the difficulty to incorporate sufficient N or Bi via epitaxial growth. To overcome this, we investigate a novel class of strain-compensated type-II QWs combining electron-confining, tensile strained […]